首页> 外文OA文献 >Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach
【2h】

Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach

机译:检测时间的社区结构和活动模式   网络:非负张量分解方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The increasing availability of temporal network data is calling for moreresearch on extracting and characterizing mesoscopic structures in temporalnetworks and on relating such structure to specific functions or properties ofthe system. An outstanding challenge is the extension of the results achievedfor static networks to time-varying networks, where the topological structureof the system and the temporal activity patterns of its components areintertwined. Here we investigate the use of a latent factor decompositiontechnique, non-negative tensor factorization, to extract the community-activitystructure of temporal networks. The method is intrinsically temporal and allowsto simultaneously identify communities and to track their activity over time.We represent the time-varying adjacency matrix of a temporal network as athree-way tensor and approximate this tensor as a sum of terms that can beinterpreted as communities of nodes with an associated activity time series. Wesummarize known computational techniques for tensor decomposition and discusssome quality metrics that can be used to tune the complexity of the factorizedrepresentation. We subsequently apply tensor factorization to a temporalnetwork for which a ground truth is available for both the community structureand the temporal activity patterns. The data we use describe the socialinteractions of students in a school, the associations between students andschool classes, and the spatio-temporal trajectories of students over time. Weshow that non-negative tensor factorization is capable of recovering the classstructure with high accuracy. In particular, the extracted tensor componentscan be validated either as known school classes, or in terms of correlatedactivity patterns, i.e., of spatial and temporal coincidences that aredetermined by the known school activity schedule.
机译:时空网络数据可用性的不断提高,要求对在时域网络中提取和表征介观结构以及将此类结构与系统的特定功能或特性相关联进行更多的研究。一个巨大的挑战是将静态网络的结果扩展到时变网络,其中系统的拓扑结构和其组件的时间活动模式是相互交织的。在这里,我们研究了使用潜在因子分解技术(非负张量分解)来提取时间网络的社区活动结构。该方法本质上是暂时的,可以同时识别社区并跟踪其随时间的活动。我们将时态网络的时变邻接矩阵表示为三向张量,并将该张量近似为可被解释为具有相关活动时间序列的节点。我们总结了张量分解的已知计算技术,并讨论了一些可用于调整因式表示的复杂性的质量度量。我们随后将张量分解应用于时域网络,对于该时域网络,基本事实可用于社区结构和时态活动模式。我们使用的数据描述了学校中学生的社交互动,学生与学校班级之间的关联以及学生随时间的时空轨迹。我们证明了非负张量分解能够以高精度恢复类结构。特别地,所提取的张量分量可以被验证为已知学校课程,或者可以根据相关活动模式(即,由已知学校活动时间表确定的空间和时间重合)进行验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号